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Introduction

This document has been written in an attempt to make Tipping’s [1] Rele-
vance Vector Machines (RVM) as simple to understand as possible for those
with minimal experience of Machine Learning. It assumes knowledge of
probability in the areas of Bayes’ theorem and Gaussian distributions in-
cluding marginal and conditional Gaussian distributions. It also assumes
familiarity with matrix differentiation, the vector representation of regres-
sion and kernel (basis) functions. These latter two areas are briefly covered
in the author’s similar paper on Support Vector Machines which can be
found through the URL on the coverpage.

The document has been split into two main sections. The first introduces the
problem that needs to be solved, namely maximising the posterior probabil-
ity of regression target values over some hyperparameters. It then proceeds
to derive the equations required to do this. Aside from the areas mentioned
above where knowledge is assumed, every mathematical step is gone through.
It is therefore hoped that there is no ambiguity over any of the details in
this explanation, though this does make the description a little cumbersome.
The second section therefore explains from an algorithmic viewpoint the it-
erations that would be required to actually apply the technique.

Aside from Tipping [1], the majority of this document is based on work by
MacKay [2], [3], [4], [5] and Bishop [6].

Notation

With the view of making this description as explicit (in the mathematical
sense) as possible, it is worth introducing some of the notation that will be
used:

• P (A|B,C) is the probability of A given B and C. Note that using
this notation, different representations of the parameters will not alter
this probability, e.g. P (A|B) ≡ P (A|B−1). Furthermore, for the sake
of simplicity, occasionally some of the elements in the probabilistic
notation will be omitted where they are not relevant, e.g. P (A|B) ≡
P (A|B,C,D etc).

• X ∼ N(µ, σ2) is used to signify that X is normally distributed with
mean µ and variance σ2.

• Bold font is used to represent vectors and matrices.
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1 Theory

1.1 Evidence Approximation Theory

Linear regression problems are generally based on finding the parameter
vector w and the offset c so that we can predict y for an unknown input
x (x ∈ <M ):

y = wTx + c

In practice we usually incorporate the offset c into w. If there is a non-linear
relationship between x and y then a basis function can be used:

y = wTφ(x)

where x 7→ φ(x) is a non-linear mapping (i.e. basis function).

When attempting to calculate w from our our training examples, we as-
sume that each target ti is representative of the true model yi, but with the
addition of noise εi:

ti = yi + εi

= wTφ(xi) + εi

where εi are assumed to be independent samples from a Gaussian noise
process with zero mean and variance σ2, i.e. εi ∼ N(0, σ2) ∀i . This means
that:

P (ti|xi,w, σ2) ∼ N(yi, σ
2)

= (2πσ2)−
1
2 exp

{
− 1

2σ2
(ti − yi)2

}
= (2πσ2)−

1
2 exp

{
− 1

2σ2
(ti −wTφ(xi))

2

}
Looking at N training points simultaneously, so that the vector t represents
all the individual training points ti and the N × M design matrix Φ is
constructed such that the ith row represents the vector φ(xi), we have:

P (t|xi,w, σ2) =
N∏
i=1

N(wTφ(xi), σ
2)

=

N∏
i=1

(2πσ2)−
1
2 exp

{
− 1

2σ2
(ti −wTφ(xi))

2

}
= (2πσ2)−

N
2 exp

{
− 1

2σ2
‖t−Φw‖2

}
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When attempting to learn the relationship between x and y, we wish to
constrain complexity and hence the growth of the weights w and do this
by defining an explicit prior probability distribution on w. Our preference
for smoother and therefore less complex functions is encoded by using a
zero-mean Gaussian prior over w:

P (w|αi) ∼ N(0, α−1i )

where we have used αi to describe the inverse variance (i.e. precision) of
each wi. If once again we look at all N points simultaneously, so that the
ith element in the vector α represents αi, we have:

P (w|α) =
N∏
i=0

N(0, α−1i )

This means that there is an individual hyperparameter αi associated with
each weight, modifying the strength of the prior thereon.

The posterior probability over all the unknown parameters, given the data,
is expressed as P (w,α, σ2|t). We are trying to find the w,α and σ2 which
maximise this posterior probability. We can decompose the posterior:

P (w,α, σ2|t) = P (w|t,α, σ2)P (α, σ2|t) (1.1)

Substituting β−1 for σ2 to make the maths appear less cluttered, the first
part of (1.1) can be expressed:

P (w|t,α, β) ∼ N(m,Σ) (1.2)

where the mean m and the covariance Σ are given by:

m = βΣΦT t (1.3)

Σ = (A + βΦTΦ)−1 (1.4)

and A = diag(α).

The method for arriving at (1.2), (1.3) and (1.4), relating to conditional
Gaussian distributions, lies outside the scope of this document.

In order to evaluate m and Σ we need to find the hyperparameters (α and
β) which maximise the second part of (1.1), which we decompose:

P (α, σ2|t) ∝ P (t|α, σ2)P (α)P (σ2)

We will assume uniform hyperpriors and hence ignore P (α) and P (σ2). Our
problem is now to maximise the evidence:

P (t|α, σ2) ≡ P (t|α, β) =

∫
P (t|w, β)P (w|α)dw (1.5)
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Looking at the first component of the equation:

P (t|w, β) =

N∏
i=1

N(y, β−1)

=

(
2π

β

)−N
2

exp

{
−β

2
‖t−Φw‖2

}
(1.6)

And then at the second (where M is the dimensionality of x):

P (w|α) =
M∏
i=1

N(0, α−1i )

=

M∏
i=1

(2πα−1i )−
1
2 exp

{
−1

2
αiw

2

}

= (2π)−
M
2

M∏
i=1

α
1
2
i exp

{
−1

2
wTAw

}
(1.7)

Substituting (1.6) and (1.7) into (1.5):

P (t|α, β) =

∫ (
2π

β

)−N
2

exp

{
−β

2
‖t−Φw‖2

}
(2π)−

M
2

M∏
i=1

α
1
2
i exp

{
−1

2
wTAw

}
dw

=

(
β

2π

)N
2
(

1

2π

)M
2

M∏
i=1

α
1
2
i

∫
exp−

{
β

2
‖t−Φw‖2 +

1

2
wTAw

}
dw

(1.8)

In order to simplify (1.8), we create a definition to represent the integrand:

E(w) =
β

2
‖t−Φw‖2 +

1

2
wTAw (1.9)

This means that:

P (t|α, β) =

(
β

2π

)N
2
(

1

2π

)M
2

M∏
i=1

α
1
2
i

∫
exp {−E(w)} dw

Expanding out (1.9) we get:

E(w) =
β

2
(tT t− 2tTΦw + wTΦTΦw) +

1

2
wTAw

=
1

2
(βtT t− 2βtTΦw + βwTΦTΦw + wTAw)
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Substituting in (1.4) and then using I = Σ−1Σ:

E(w) =
1

2
(βtT t− 2βtTΦw + wTΣ−1w)

=
1

2
(βtT t− 2βtTΦΣ−1Σw + wTΣ−1w)

Substituting in (1.3):

E(w) =
1

2
(βtT t− 2mTΣ−1w + wTΣ−1w + mTΣ−1m−mTΣ−1m)

= E(t) +
1

2
(w−m)TΣ−1(w−m)

where

E(t) =
1

2
(βtT t−mTΣ−1m)

Our integrand from (1.8) now becomes:∫
exp {−E(w)} dw = exp {−E(t)} (2π)

M
2 |Σ|

1
2

Substituting this back in, gives us:

P (t|α, β) =

(
β

2π

)N
2
(

1

2π

)M
2

M∏
i=1

α
1
2
i exp {−E(t)} (2π)

M
2 |Σ|

1
2

This is known as our marginal likelihood and taking logs, gives us our log
marginal likelihood :

lnP (t|α, β) =
N

2
lnβ −E(t)− 1

2
ln |Σ| − N

2
ln(2π) +

1

2

M∑
i=1

lnαi (1.10)

It is this equation we need to maximise with respect to α and β, a process
known as the evidence approximation procedure.

1.2 Evidence Approximation Procedure

In order to maximise our log marginal likelihood, we start by taking deriva-
tives of (1.10) with respect to αi and setting these to zero:

d

dαi
lnP (t|α, β) =

1

2αi
− 1

2
Σii −

1

2
m2
i = 0

⇒ αi =
1− αiΣii

m2
i
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Substituting in γi = 1 − αiΣii our recursive definition for the αi which
maximise (1.10) can be expressed more elegantly as:

αi =
γi
m2
i

We now need to differentiate (1.10) with respect to β and set these deriva-
tives to zero:

d

dβ
lnP (t|α, β) =

1

2

(
N

β
− ‖t−Φm‖2 − Tr

[
ΣΦTΦ

])
= 0 (1.11)

In order to solve this, we first simplify the argument of the trace operator
Tr[•]:

ΣΦTΦ = ΣΦTΦ + β−1ΣA− β−1ΣA

= Σ
(
ΦTΦβ + A

)
β−1 − β−1ΣA

=
(
A + βΦTΦ

)−1 (
ΦTΦβ + A

)
β−1 − β−1ΣA

= (I−AΣ)β−1

Substituting this back into (1.11):

1

2

(
N

β
− ‖t−Φm‖2 − Tr

[
I−AΣ

β

])
= 0

⇒ N

β
− Tr

[
I−AΣ

β

]
= ‖t−Φm‖2

⇒ 1

β
(N − Tr [I−AΣ]) = ‖t−Φm‖2

⇒ 1

β
=

‖t−Φm‖2

N − Tr [I−AΣ]

⇒ β =
N −

∑
i γi

‖t−Φm‖2

The αi and β which maximise our marginal likelihood are then found it-
eratively by setting α and β to initial values, finding values for m and Σ
from (1.3) and (1.4), using these to calculate new estimates for α and β and
repeating this process until a convergence criteria is met.

We will then be left with values for α and β which maximise our marginal
likelihood and which we can use to evaluate our predictive distribution over
t for a new input x′:

P (t|x′,α, β) =

∫
P (t|w, β)P (w|,α, β)dw

= N(mTφ(x′), σ2(x′))
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This means that our estimate for t is the mean of the above distribution
mTφ(x′).

Our confidence in our prediction is determined by the variance of this dis-
tribution σ2(x′) which is given by:

σ2(x′) = β−1 + φ(x′)TΣφ(x′)

1.3 Automatic Relevance Determination

Whilst carrying out the evidence approximation procedure described above,
many of the αi will tend to infinity. This has implications for the variance
Σ and mean m of the posterior distribution over the corresponding weights
in (1.2):

lim
αi→∞

Σ = lim
αi→∞

(A + βΦTΦ)−1 = 0

⇒ lim
αi→∞

m = lim
αi→∞

βΣΦT t = 0

This means that each wi that such αi relate to will be distributed αi ∼
N(0, 0), i.e. will be equal to zero. The corresponding basis functions, φ(xi)
should therefore be pruned from the overall design matrix Φ each iteration.

The xi corresponding to the remaining non-zero weights after pruning are
called relevance vectors and are analogous to the support vectors of an SVM.
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2 Application

The RVM process is an iterative one and involves repeatedly re-estimating
α and β until a stopping condition is met. The steps are as follows:

1. Select a suitable kernel function for the data set and relevant param-
eters. Use this kernel function to create the design matrix Φ.

2. Establish a suitable convergence criteria for α and β, e.g. a threshold
value for change δThresh between one iteration’s estimation of α and
the next δ =

∑
i=1 α

n+1
i − αni so that re-estimation will stop when

δ < δThresh.

3. Establish a threshold value αThresh which it is assumed an αi is tending
to infinity upon reaching it.

4. Choose starting values for α and β.

5. Calculate m = βΣΦT t and Σ = (A + βΦTΦ)−1.

6. Update αi = γi
m2

i
and β =

N−
∑

i γi
‖t−Φm‖2 .

7. Prune the αi and corresponding basis functions where αi > αThresh.

8. Repeat (5) to (7) until the convergence criteria is met.

Our hyperparameter values α and β which result from the above procedure
are those that maximise our marginal likelihood and hence are those used
when making a new estimate of a target value t for a new input x′:

t = mTφ(x′) (2.1)

The variance relating to our confidence in this estimate is given by:

σ2(x′) = β−1 + φ(x′)TΣφ(x′) (2.2)
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